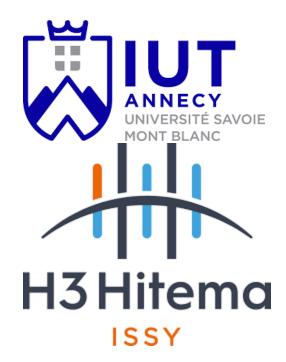

Modélisation procédurale de milieux sous-marins

Présentation d'un gars qui traine dans vos couloirs depuis un moment :

Marc Hartley

Qui suis-je

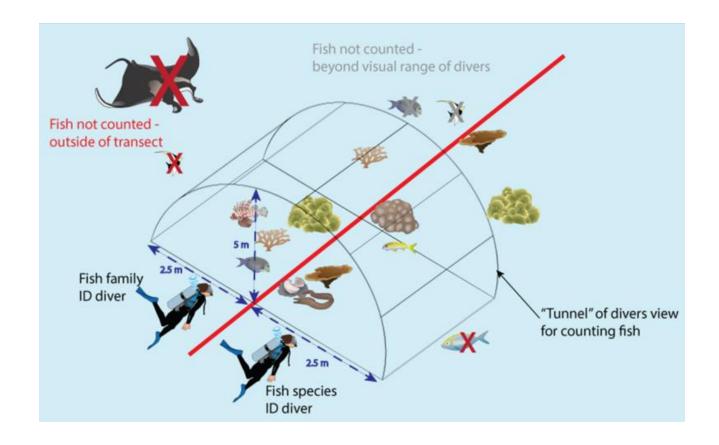

Background informatique

Master Visual computing à l'Université de Nantes

Doctorant 2^e année au LIRMM, Université de Montpellier

Avec Christophe Fiorio, Noura Faraj, Karen Godary-Dejean

Et Nicolas Mellado, Loïc Barthe



Présentation de thèse

Projet global: Simulateur pour robots d'exploration sous-marine

Pour l'étude de la biodiversité marine

Projet global: Simulateur pour robots d'exploration sous-marine

Plongeurs humains:

- long,
- coûteux,
- dangereux
- perturbe la faune sauvage
- beaucoup d'administratif

Source: Schultz et al. (2019). Arctic marine ecology benchmarking program: Monitoring biodiversity using scuba

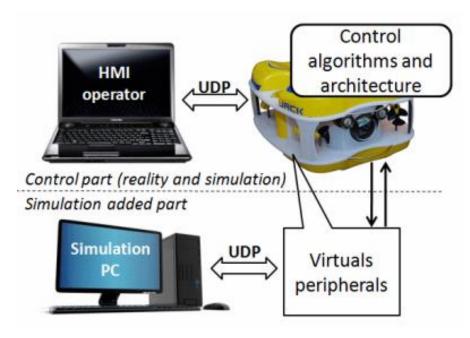
Projet global: Simulateur pour robots d'exploration sous-marine Biomimetic U-CAT Turtle-Like AUV (2016) Center of Robotics

Utilisation de robots :

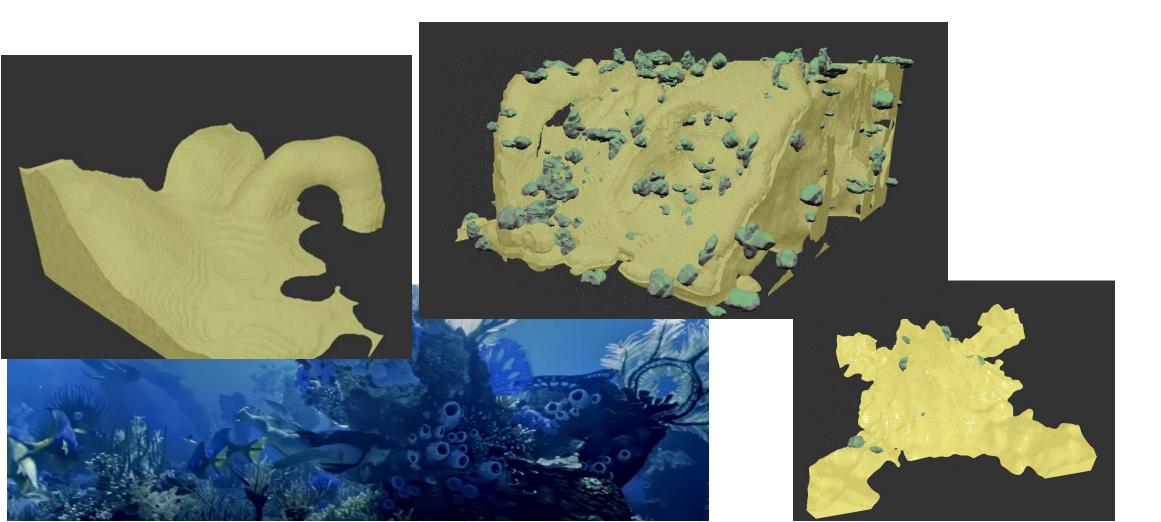
... téléguidé :

- Bloqué par des câbles

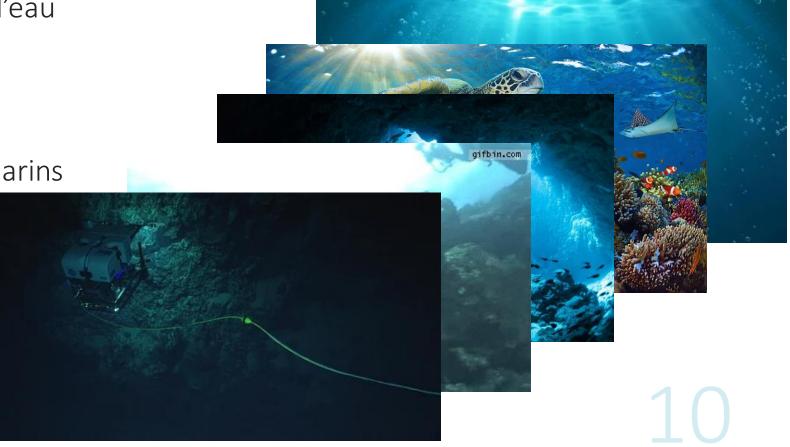
... autonome:


- Accès difficile
- Terrains complexes
- Nombreux stimuli et bruits
- Retour du robot incertain

Projet global: Simulateur pour robots d'exploration sous-marine


Création d'un camp d'entrainement pour robot!

Source: Louis, Silvain, et al. *HIL Simulator for AUV with ContrACT*. 2019.


Sujet de thèse : Génération procédurale d'environnements sous-marins

Difficultés du monde sous-marin

La difficulté des environnements sousmarins par rapport au terrestre

- Beaucoup de travaux pour la génération de terrains terrestres depuis les années 80'
- Pas du tout* de travaux sous l'eau
 - Milieu différent
 - Gravité différente
 - Notions de 3D
 - Importance des courants marins
 - Presque aucune visibilité
 - Difficulté d'accès

La difficulté des îles coralliennes

Modélisation de 99.9% des océans : facile!

Récifs corallien :

- < 0.1% de la surface des océans

- Difficiles d'accès pour amener du matériel

- Protection des zones

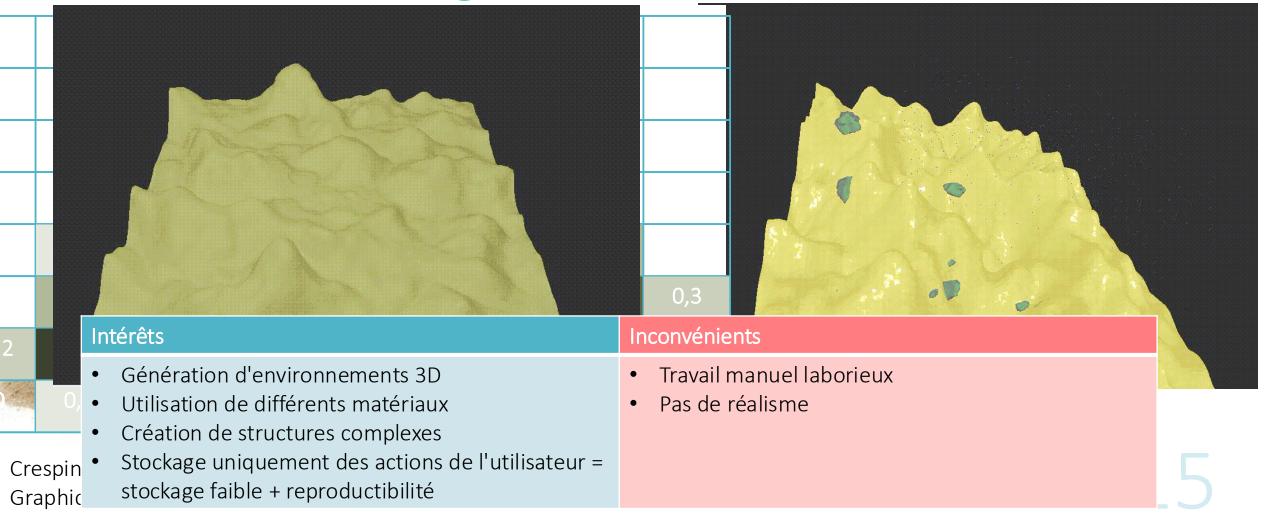
Résultat

- Peu de littérature
- Peu de supports numériques
- Utilisation de «Rapports d'expéditions»
- Interprétations de théories (relativement) incertaines

Richer de Forges, Bertrand, et al. *La Campagne CORAIL 2 Sur Le Plateau Des Îles Chesterfield*. 1988 Darwin, Charles *The structure and distribution of coral reefs*, 1842

Droxler, André W., and Stéphan J. Jorry. "The Origin of Modern Atolls : Challenging Darwin's Deeply Ingrained Theory." *Annual Review Of Marine Science*, 2021

Terry, James P., and James Goff. One Hundred and Thirty Years since Darwin: 'Reshaping' the Theory of Atoll Formation. 2013


Travaux

Passé, présent, futur

Travaux passés

Travaux exploratoires

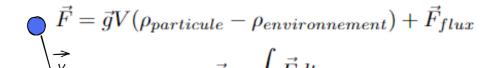
Génération d'environnements 3D Utilisation de grilles de voxels

Génération de réseaux karstiques Recherche du milieu entre automatique et manuel

Paris, Axel, et al. Synthesizing Geologically Coherent Cave Networks. 2021.

Collon, Pauline, et al. "Statistical Metrics for the Characterization of Karst Network Geometry and Topology." Geomorphology, 2017

Runions, Adam, et al. "Modeling Trees with a Space Colonization Algorithm." Natural Phenomena, 2007


Inconvénients

Intérêts

- Control utilisateur important, intuitif
- Pas de notion de graphes, ni de recherche de chemins le plus court

- Géologiquement aucune cohérence
- Limitée à des karsts sans cycles

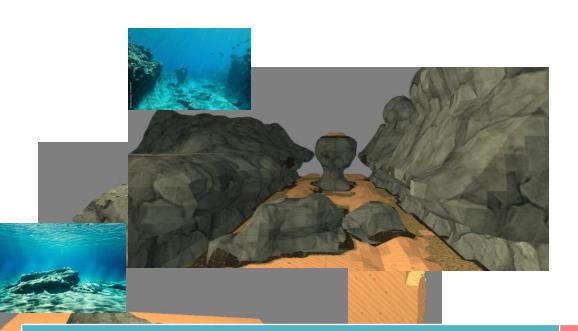
Érosion sur grilles de voxel l Présentée aux JFIG

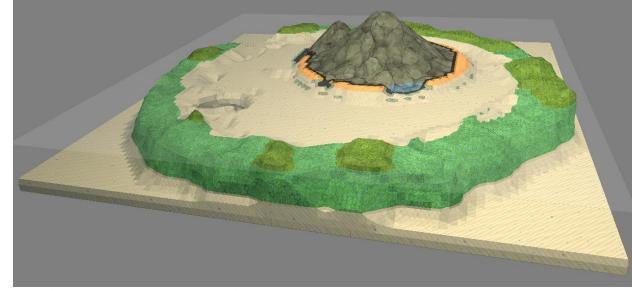
Intérêts

- Une généralisation (et simplification) des modèles d'érosion existants
- Un modèle agnostique de la représentation de terrain choisie
- Compatible avec n'importe quel environnement (terrestre, sous-marin)
- Simulation d'érosion rapide, non-limité à la taille du terrain
- Peu de paramètres

Inconvénients

- Qualité dépendante du nombre de particules
- •
- Plein d'autres trucs


ned Particle)9 edings of the


Travaux actuels

Enfin, pourquoi suis-je là?!

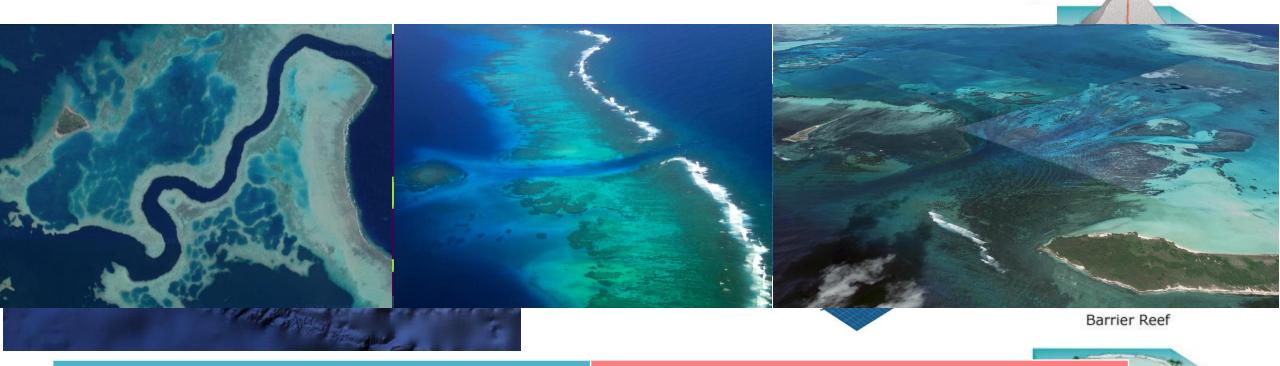
Modélisation implicite de terrain

Notion de matériaux

Génevaux, Jean-David, et al. Terrain Modelling from Feature Primitives, 2015.

- Stockage faible même pour de grands terrains
- Multi-échelles

Intérêts


- Simulations physiques « gratuites »
- Contrôle de processus géologiques par la notion de matériaux

Inconvénients

Travail en cours...

-Time Skin sactions on

Génération procédurale de récifs coralliens Utilisation de théories de 1842

Intérêts

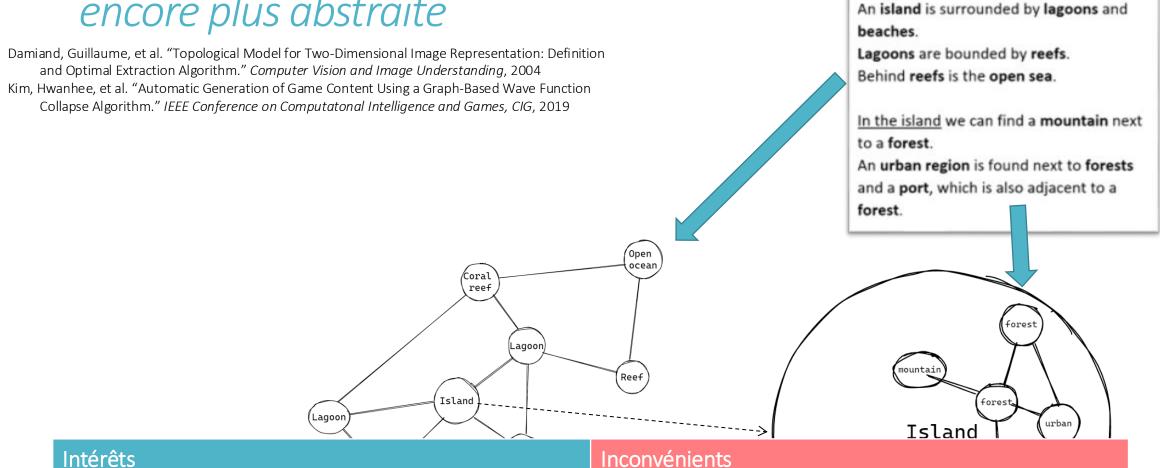
Darv

Probablement quelque chose...

Terry
F

Inconvénients

Beaucoup de facteurs "inconnus" ou impossible à prendre en compte


Travail en cours...

Travaux futurs

Vers une génération intelligente des environnements

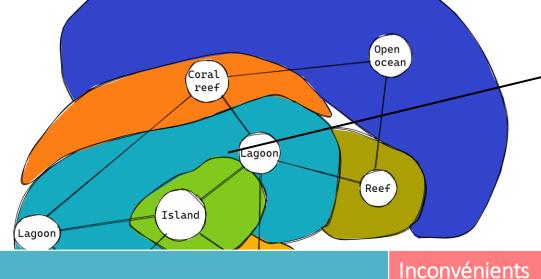
Représentation de terrain par carte topologique D'une représentation abstraite vers une autre représentation

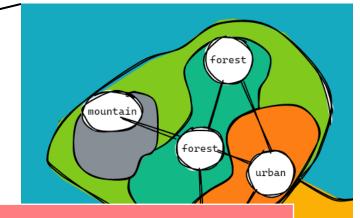
encore plus abstraite

Intérêts

Génération d'une topologie plausible à partir de connaissances humaines

Génération de graphe planaire déjà compliqué en 2D, équivalent 3D?


Abuzuraiq, Ahmed M. "On Using Graph Partitioning with Isomorphism Constraint in Procedural Content Generation." ACM International Conference Proceeding Series, 2017


Kant, Goos. "Drawing Planar Graphs Using the Canonical Ordering." Proceedings - Annual IEEE

Symposium on Foundations of Computer Science, FOCS, 1992

An island is a triangle shape of about

The lagoons are about 5km wide and 100m deep.

•	Une génération procédurale définie à partir de
	règles simples données par un utilisateur

Un modèle explicable

Intérêts

Contrôle utilisateur fort

Probablement plein ...

Conclusion de tout ça

Un grand pas en avant pour la science!

Génération procédurale de terrains sous-marins

Notions vues:

- Fonctions de base radiale,
- NURBS,
- Surfaces implicites,
- Génération de plantes,
- Graphes,
- SPH,
- Érosion de terrain,
- Arbres de composition,
- Simulations physiques,
- Cartes topologiques,
- Géologie,
- Biologie marine,
- Océanologie

- ...

Et surtout...

Moi

Références

Schultz et al. (2019). Arctic marine ecology benchmarking program: Monitoring biodiversity using scuba

Dianne et al. A comparison of temperate reef fish assemblages recorded by three underwater stereo-video techniques, 2005

Louis, Silvain, et al. HIL Simulator for AUV with ContrACT. 2019.

Richer de Forges, Bertrand, et al. La Campagne CORAIL 2 Sur Le Plateau Des Îles Chesterfield. 1988

Darwin, Charles The structure and distribution of coral reefs, 1842

Droxler, André W., and Stéphan J. Jorry. "The Origin of Modern Atolls : Challenging Darwin's Deeply Ingrained Theory." Annual Review Of Marine Science, 2021

Terry, James P., and James Goff. One Hundred and Thirty Years since Darwin : $^\prime$ Reshaping $^\prime$ the Theory of Atoll Formation. 2013

Collon, Pauline, et al. "Statistical Metrics for the Characterization of Karst Network Geometry and Topology." Geomorphology, 2017

Runions, Adam, et al. "Modeling Trees with a Space Colonization Algorithm." Natural Phenomena, 2007

Abuzuraiq, Ahmed M. "On Using Graph Partitioning with Isomorphism Constraint in Procedural Content Generation." ACM International Conference Proceeding Series, 2017

Kant, Goos. "Drawing Planar Graphs Using the Canonical Ordering." Proceedings - Annual IEEE Symposium on Foundations of Computer Science, FOCS, 1992

Gumin, Maxime, « WaveFunction Collapse », 2016

Stam, J. Real-Time Fluid Dynamics for Games. Proceedings of the Game Developer Conference, 2003

Harris, Fast Fluid Dynamics Simulation 2004 in GPU gems 3, chapter 38

Catmull, Edwin, and Rom, Raphael "A class of local interpolating splines". In Barnhill, Robert E.; Riesenfeld, Richard F. (eds.). Computer Aided Geometric Design, 1974

Crespin, Benoît, et al. "Implicit Sweep Objects." Computer Graphics Forum, 1996

Vaillant, Rodolphe, et al. "Implicit Skinning: Real-Time Skin Deformation with Contact Modeling." ACM Transactions on Graphics, 2013

Krištof, Peter, et al. "Hydraulic Erosion Using Smoothed Particle Hydrodynamics." Computer Graphics Forum, 2009

Références «génération de terrains»

Paris, Axel, et al. Synthesizing Geologically Coherent Cave Networks. 2021.

Paris, Axel, et al. *Desertscape Simulation*. no. 7, 2020, pp. 47–55.

Génevaux, Jean-David, et al. *Terrain Modelling from Feature Primitives*. 2015.

Jákó, Balázs, and Balázs Tóth. Fast Hydraulic and Thermal Erosion on GPU. no. July, 2011, p. 4.

Galin, Éric, et al. *A Review of Digital Terrain Modeling*. 2019.

Musgrave, Forest Kenton, et al. "The Synthesis and Rendering of Eroded Fractal Terrains." Proceedings of the 16th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1989, 1989

Patel, Daniel, et al. "Modeling Terrains and Subsurface Geology." Interactive Data Processing and 3D Visualization of the Solid Earth, 2021

Roudier, P., et al. "Landscapes Synthesis Achieved through Erosion and Deposition Process Simulation." Computer Graphics Forum, 1993

Št'ava, Ondřej, et al. "Interactive Terrain Modeling Using Hydraulic Erosion." *Computer Animation* 2008 - ACM SIGGRAPH / Eurographics Symposium, SCA 2008 - Proceedings, 2008

Peytavie, Adrien, et al. Arches: A Framework for Modelling Complex Terrains. 2009